Probability theory

Exercise Sheet 8

Exercise 1 (4 Points)

Let $\mu_{\lambda}(dx)$ be the Poisson distribution on \mathbb{R} with parameter $\lambda > 0$, i.e.

$$\mu_{\lambda}(dx) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \delta_k(dx)$$

- (a) Show that $\Gamma = \{\mu_{\lambda} : \lambda \in K\}$ is relatively compact, where $K \subset (0, \infty)$ is bounded and closed. Are all limit points of Γ already contained in Γ ?
- (b) Does there exists $\mu_0, \mu_\infty \in \mathcal{P}(\mathbb{R})$ such that $\mu_\lambda \to \mu_0$ as $\lambda \to 0$ or $\mu_\lambda \to \mu_\infty$ as $\lambda \to \infty$ weakly?

Exercise 2 (4 Points)

Let μ_{λ} be the exponential distribution with parameter $\lambda > 0$, i.e.

$$\mu_{\lambda}(dx) = f_{\lambda}(x)dx$$

where $f_{\lambda}(x) = \mathbb{1}_{[0,\infty)}(x)\lambda e^{-\lambda x}, x \in \mathbb{R}$.

- (a) Show that $\Gamma = \{\mu_{\lambda} : \lambda \in K\}$ is relatively compact, where $K \subset (0, \infty)$ is compact. Are all limit points of Γ already contained in Γ ?
- (b) Does there exists $\mu_0, \mu_\infty \in \mathcal{P}(\mathbb{R})$ such that $\mu_\lambda \to \mu_0$ as $\lambda \to 0$ or $\mu_\lambda \to \mu_\infty$ as $\lambda \to \infty$ weakly?

Exercise 3 (4 Points)

Let $(\mu_n)_{n\in\mathbb{N}}\subset\mathcal{P}(\mathbb{R})$. Prove that μ_n is tight if and only if the respective sequence of distribution functions $F_n(t):=\mu_n((-\infty,t])$ satisfies

$$\lim_{t\to\infty}\sup_{n\geq 1}|F_n(t)-1|=0,\quad \text{ and }\quad \lim_{t\to-\infty}\sup_{n\geq 1}|F_n(t)|=0.$$

Exercise 4 (4 Points, talk)

Explain the main steps in the proof of Prokhorov's theorem.